

Bio-Aquatic Testing, Inc.

Kirkpatrick Group, Inc. Dynablue – 05JL

48 Hr Acute Product Report

57086, 57141, and 57231

Mysidopsis bahia

June 6, 2014

bason Approved by:

Chris Robason, President

Bio-Aquatic Testing, Inc. • 2501 Mayes Rd. Ste. 100 • Carrollton, Texas • 75006

TABLE OF CONTENTS

Toxicity Test Summary	3
48 Hour Range Finder Test Report <i>Mysidopsis bahia</i>	5
48 Hour Definitive Test Report <i>Mysidopsis bahia</i>	6
Survival Data	7
Statistical and Chemical Analysis	Appendix A
Reference Toxicants	Appendix B
Literature References	Appendix C

Unless otherwise noted in the body of the report, all data reported in this document are in compliance with NELAC standards and apply only to the samples referenced within. This report document may not be edited or reproduced in part or in full by any other entity, unless Bio-Aquatic Testing, Inc. issues written approval.

*HAND-WRITTEN RAW DATA TABLES ARE AVAILABLE UPON REQUEST

2501 Mayes Road, Suite 100 Carrollton, Texas 75006 Tel: (972) 242-7750 Fax: (972) 242-7749

Toxicity Test Summary

Client: Kirkpatrick Group Inc. Product: Dynaguard-05JL Date: June 6, 2014

Overview:

A sample of Dynaguard -05JL from Kirkpatrick Group, Inc. was used for a product testing study to determine the toxicity of a part per million dosage of product to the *Mysidopsis bahia* (saltwater invertebrate).

Data Analysis:

The following is a list of bio-monitoring tests performed.

Bio-Monitoring Tests:

- 1. 48 Hour Acute Range Finder *Mysidopsis bahia*
- 2. 48 Hour Definative Test *Mysidopsis bahia*

Range Finder Results:

 LC_{50} and 95% confidence limits in ppm of the 48 hour range finder tests

Organism	Lab ID	Time Initiated	Time Ended	LC50	Lower CL	Upper CL
M. bahia	57086	16:30	16:00	>50,000	NR	NR
M. bahia	57141	16:25	13:55	<60,000	NR	NR

Definative Results:

 LC_{50} and 95% confidence limits in ppm of 48 hour definitive test

		Time				
Organism	Lab ID	Initiated	Time Ende	d LC50	Lower CL	Upper CL
M. bahia	57231	16:00	15:15	56,108.72	52,410.50	60,067.91

48 HOUR RANGE FINDER TEST REPORT

Test Procedures:

Mysidopsis bahia

EPA METHOD: 2007

The 48 hour *Mysiopsis bahia* range finder test was initiated at 16:30 hours on May 8, 2014. A stock solution of 50,000 ppm was prepared 48 hours prior to the test by adding 100 g of product to 2 L of synthetic seawater. From this stock solution, six product concentrations of 1,000, 5,000, 10,000, 25,000, 35,000 and 50,000 ppm (100% stock solution) were prepared utilizing synthetic water. The test was set up with 266 ml plastic cups containing 200 ml of test solution. Each concentration or control consisted of 5 replicate cups with 8 organisms each, giving a total of 40 per treatment. The control was conducted concurrently with the test. Test organisms were one to five days old laboratory cultured juveniles. Juveniles were randomly introduced into the test. The number of surviving organisms was recorded after each 24 hour period. Surviving organisms in each test chamber were fed freshly hatched brine shrimp two times per day. The test ended at 16:00 hours on May 10, 2014. Survival data was statistically (p=0.05) analyzed according to EPA procedures to determine the LC₅₀ and 95% confidence limits.

Survival:

Mysidopsis bahia

The 48 hour LC₅₀ (concentration at which 50% mortality is expected to occur) for Dynaguard-05JL on *Mysidopsis bahia* survival data was calculated by the Spearman-Karber program as > 50,000 ppm.

LC₅₀: >50,000 ppm 95% Lower Confidence Limit: Not Reliable* 95% Upper Confidence Limit: Not Reliable*

*A confidence limit of "not reliable" occurs when two or more concentrations have no partial mortality. The LC_{50} is still considered valid.

48 HOUR RANGE FINDER TEST REPORT

Test Procedures:

Mysidopsis bahia

EPA METHOD: 2007

A second 48 hour *Mysiopsis bahia* range finder test was initiated at 16:25 hours on May 16, 2014. A stock solution of 1,000,000 ppm was prepared 48 hours prior to the test by adding 2000 g of product to 2 L of synthetic seawater. From this stock solution, five product concentrations of 60,000, 125,000, 250,000, 500,000, and 1,000,000 ppm (100% stock solution) were prepared utilizing synthetic water. The test was set up with 266 ml plastic cups containing 200 ml of test solution. Each concentration or control consisted of 5 replicate cups with 8 organisms each, giving a total of 40 per treatment. The control was conducted concurrently with the test. Test organisms were one to five days old laboratory cultured juveniles. Juveniles were randomly introduced into the test. The number of surviving organisms was recorded after each 24 hour period Surviving organisms in each test chamber were fed freshly hatched brine shrimp two times per day. The test ended at 13:55 hours on May 18, 2014. Survival data was statistically (p=0.05) analyzed according to EPA procedures to determine the LC₅₀ and 95% confidence limits.

Survival:

Daphnia pulex

The 48 hour LC_{50} (concentration at which 50% mortality is expected to occur) for Dynaguard-05JL on *Mysidopsis bahia* survival data was calculated by the Spearman-Karber program as < 60,000 ppm.

LC₅₀: <60,000 ppm 95% Lower Confidence Limit: Not Reliable* 95% Upper Confidence Limit: Not Reliable*

*A confidence limit of "not reliable" occurs when two or more concentrations have no partial mortality. The LC_{50} is still considered valid.

48 HOUR DEFINITIVE TEST REPORT

Test Procedures:

Mysidopsis bahia

EPA METHOD: 2007

The 48 hour *Mysiopsis bahia* definitive test was initiated at 16:00 hours on June 6, 2014. A stock solution of 167,000 ppm was prepared 48 hours prior to the test by adding 501 g of product to 3 L of synthetic seawater. From this stock solution, six product concentrations of 10,000, 25,000, 50,000, 75,000, 100,000 and 167,000 ppm (100% stock solution) were prepared utilizing synthetic water. The test was set up with 266 ml plastic cups containing 200 ml of test solution. Each concentration or control consisted of 5 replicate cups with 8 organisms each, giving a total of 40 per treatment. The control was conducted concurrently with the test. Test organisms were one to five days old laboratory cultured juveniles. Juveniles were randomly introduced into the test. The number of surviving organisms was recorded after each 24 hour period Surviving organisms in each test chamber were fed freshly hatched brine shrimp two times per day. The test ended at 15:15 hours on June 8, 2014. Survival data was statistically (p=0.05) analyzed according to EPA procedures to determine the LC₅₀ and 95% confidence limits.

Survival:

Mysidopsis bahia

The 48 hour LC_{50} (concentration at which 50% mortality is expected to occur) for Dynaguard-05JL on *Mysidopsis bahia* survival data was calculated by the Spearman-Karber program as 56,108.72 ppm.

LC₅₀: 56,108.72 ppm 95% Lower Confidence Limit: 52,410.50 ppm 95% Upper Confidence Limit: 60,067.91 ppm

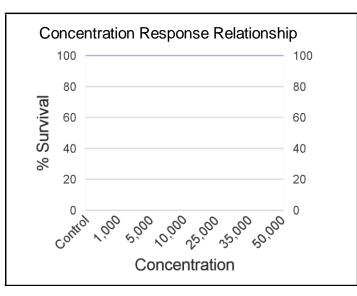
TOXICITY TEST

48 Hr Acute Mysidopsis bahia

16:30

			Lab ID:	57086
Client: Kirkpatrick Group Inc.	Product Test		Test Temperature (oC):	25 ± 1
Permit Number: N/A			Photo Period:	16 hours light 8 hours dark
Sample Type: Product	Outfall Name:	Dynablue-05JL	Begin Date:	5/8/2014
Receiving Water Name: N/A			End Date:	5/10/2014

Test Start Time:


Test End Time: 16:00

SURVIVAL

Con.		Number Of Alive Per Replicate														Avg%	
ppm			5/8			5/9					5/10					Surv.	
	Α	В	С	D	Е	Α	В	С	D	Е	А	В	С	D	Ε		
Control	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
1,000	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
5,000	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
10,000	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
25,000	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
35,000	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
50,000	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
																-	

*spilled cup

Effluent

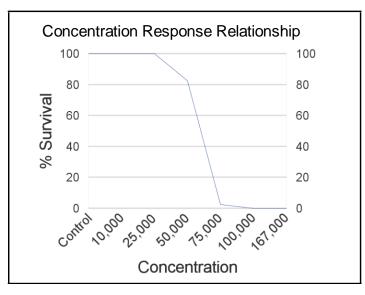
TOXICITY TEST

48 Hr Acute Mysidopsis bahia

16:00

			Lab ID:	57231
Client: Kirkpatrick Group Inc.	Product Test		Test Temperature (oC):	25 ± 1
Permit Number: N/A			Photo Period:	16 hours light 8 hours dark
Sample Type: Product	Outfall Name:	Dynablue-05JL	Begin Date:	6/6/2014
Receiving Water Name: N/A			End Date:	6/8/2014

Test Start Time:


Test End Time: 15:15

SURVIVAL

Con.		Number Of Alive Per Replicate														_	Avg%
ppm			6/6			6/7					6/8					Surv.	
	Α	В	С	D	Е	Α	В	С	D	Е	Α	В	С	D	Е		
Control	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
10,000	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
25,000	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
50,000	8	8	8	8	8	8	8	8	8	8	5	7	6	7	8		82.5%
75,000	8	8	8	8	8	3	4	3	3	4	0	0	0	0	1		2.5%
100,000	8	8	8	8	8	0	0	0	0	0	0	0	0	0	0		0.0%
167,000	8	8	8	8	8	0	0	0	0	0	0	0	0	0	0		0.0%
																-	

*spilled cup

Effluent

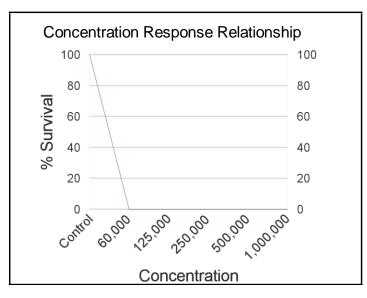
TOXICITY TEST

48 Hr Acute Mysidopsis bahia

16:25

			Lab ID:	57141
Client: Kirkpatrick Group Inc.	Product Test		Test Temperature (oC):	25 ± 1
Permit Number: N/A			Photo Period:	16 hours light 8 hours dark
Sample Type: Product	Outfall Name:	Dynablue-05JL	Begin Date:	5/16/2014
Receiving Water Name: N/A			End Date:	5/18/2014

Test Start Time:


Test End Time: 13:55

SURVIVAL

Con.		Number Of Alive Per Replicate													. Av	'g%	
mg/L			5/16			5/17					5/18						irv.
	Α	В	С	D	Ε	Α	В	С	D	Е	Α	В	С	D	Е		
Control	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	100).0%
60,000	8	8	8	8	8	8	8	8	8	8	0	0	0	0	0	0.	0%
125,000	8	8	8	8	8	4	5	4	3	4	0	0	0	0	0	0.	0%
250,000	8	8	8	8	8	2	3	2	0	2	0	0	0	0	0	0.	0%
500,000	8	8	8	8	8	0	0	0	0	0	0	0	0	0	0	0.	0%
1,000,000	8	8	8	8	8	0	0	0	0	0	0	0	0	0	0	0.	0%

*spilled cup

Effluent

APPENDIX A

STATISTICS SUMMARY

Both the lethal and sub-lethal endpoints were statistically calculated according to their respective EPA guidelines. The Chronic Freshwater organisms were calculated according to EPA-821-R-02-013, October 2002 Fourth Edition. The Chronic Marine and Estuarine organisms were calculated according to EPA-821-R-02-014, October 2002 Third Edition. The Acute Freshwater and Marine organisms were calculated according to EPA-821-R-02-012, October 2002 Fifth Edition. The fertilization organisms were calculated according to EPA-821-R-02-012, October 2002 Fifth Edition. The fertilization organisms were calculated according to EPA-600-R-12-022, dependent upon the species. Listed below are the basic principles of these guidelines. If you would like a copy of the raw statistical calculations for your test then please contact us.

The chronic and acute *Pimephales promelas* and *Menidia beryllina* survival data is analyzed using Shapiro Wilks Test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts (parametric). If the data fails Shapiro Wilks Test or Bartlett's Test then Steels Many One Test (non-parametric) is used. The chronic *Pimephales promelas* and *Menidia beryllina* growth data is analyzed using Shapiro Wilks Test and Bartlett's Test. If the data passes one of these tests then the data is run through ANOVA and Dunnetts. If the data fails Shipiro Wilks Test and Bartlett's Test. If the data fails Shipiro Wilks Test and Bartlett's Test is used. Point estimation may also be used.

The chronic *Mysidopsis bahia* survival data is analyzed using Chi-square test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts. If the data fails Chi-square test or Bartlett's Test then Steels Many One Test is used. *Mysidopsis bahia* growth data is analyzed using Chi-square test and Bartlett's Test. If the data passes one of these tests then the data is run through ANOVA and Dunnetts. If the data fails Chi-square test and Bartlett's Test. If the data passes one of these tests then the data is run through ANOVA and Dunnetts. If the data fails Chi-square test and Bartlett's Test then Steels Many One Test is used. Point estimation may also be used.

The acute *Mysidopsis bahia* survival data is analyzed using Shapiro Wilks Test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts. If the data fails Shipiro Wilks Test or Bartlett's Test then Steels Many One Test is used. Point estimation may also be used.

The chronic *Ceriodaphnia dubia* survival data are analyzed using the Fisher's Exact Test. The chronic *Ceriodaphnia dubia* reproduction and are analyzed using the Chi-square test and Bartlett Test. If the data passes one of these tests then the data is run through ANOVA and Dunnetts. If the data fails Chi-square test and Bartlett's Test then Steels Many One Test is used. Point estimation may also be used.

The acute *Daphnia pulex* and *Ceriodaphnia dubia* survival data is analyzed using Shapiro Wilks Test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts. If the data fails Shapiro Wilks Test or Bartlett's Test then Steels Many One Test is used. Point estimation may also be used.

The fertilization data is analyzed using Shapiro Wilks Test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts. If the data fails Shapiro Wilks Test or Bartlett's Test then Steels Many One Test is used. Point estimation may or TST methodology may also be used.

TOXICANT : dynaguard blue SPECIES: Mysidopsis bahia		
RAW DATA: Concentration	Number	Mortalities
(ppm)	Exposed	
.00	40	Θ
1000.00	40	Θ
*****	40	40
*****	40	40
*****	40	40
*****	40	40
*****	40	40

SPEARMAN-KARBER TRIM:

.00%

SPEARMAN-KARBER ESTIMATES: LC50:

50: 54772.26 95% CONFIDENCE LIMITS ARE NOT RELIABLE.

Shapiro - Wilk's test for nom	57231. orm: NO TRANSFORM rmality	ATI ON			
D = 6.000					
W = 0.647					
Critical W (P = 0.05) (n = 35 Critical W (P = 0.01) (n = 35	5) = 0.934 5) = 0.910				
Data FAIL normality test. Try	y another transfo	rmation.			
Warning - The first three he data and should ne	omogeneity tests ot be performed.	are sensit	tive to n	on-nor	mal
Mysid Survival File: 57231.mys Transfo		ATI ON			
Hartley's test for homogenei Bartlett's test for homogenei	ty of variance				
These two tests can not be pe zero variance.	erformed because	at least o	one group	has	
Data FALL to meet homogeneity Additional transformations an	y of variance ass re useless.	umption.			
Mysid Survival File: 57231.mys Transt	form: NO TRANSFOR	MATI ON			
STEEL'S MANY-ONE RA	ANK TEST -				nt
GROUP I DENTI FI CATI ON	TRANSFORMED MEAN		CRI T. VALUE	df	SI G
1 Con 2 10,000 3 25,000 4 50,000 5 75,000 6 100,000 7 167,000	8.000 6.600 0.200 0.000	27.50 27.50 17.50 15.00 15.00 15.00	16.00 16.00 16.00 16.00 16.00 16.00 16.00	5.00 5.00 5.00 5.00 5.00 5.00 5.00	* * *

Critical values use k = 6, are 1 tailed, and alpha = 0.05

	6/14 Dynaguard Blue Mysidopsis bahia	TEST NUMBER: 5	7231	DURATION:	48 g
RAW DATA:	Concentration	Number	Mortaliti	es	
	(ppm)	Exposed			
	.00	. 40	Θ		
	*****	40	Θ		
	*****	40	Θ		
	*****	40	7		
	*****	40	39		
	*****	40	40		
	*****	40	40		
SPEARMAN-	KARBER TRIM:	. 00%			
SPEARMAN-	KARBER ESTIMATES: 95% LOWER (56108.72 52410.50		

32%	LOWER	CONFIDENCE:	52410.50
95%	UPPER	CONFIDENCE:	60067.91

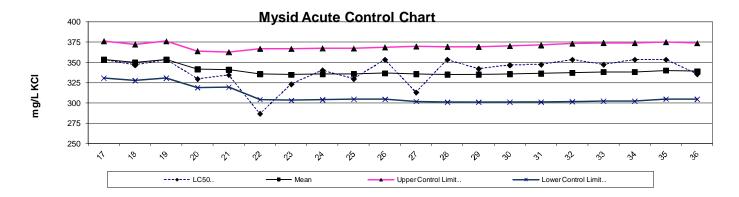
Appendix B

Americamysis bahia

BIO-AQUATIC TESTING, INC.

Carrollton, TX

REFERENCE TOXICANTS


Bio-Aquatic Testing conducts reference toxicant testing monthly for organisms cultured in-house. For studies requiring purchased organisms, reference toxicant testing is performed simultaneously. Reference toxicant testing validates data and measures organism consistency. Only reagent grade chemicals are used of the following choices: sodium laurel sulfate (SLS), copper sulfate, copper chloride, potassium chloride, and sodium chloride. Organism responses are tracked with control charts for each reference toxicant/organism combination. The data are examined for sensitivity trends and to determine if results are within EPA described limits.

ACUTE REFERENCE TOXICANT TEST RESULTS

DILUTION WATER:	Standard Synthetic Saltwater						
CHEMICAL:	Potassium Chloride						
DURATION:	48 Hour Acute						
TEST NUMBER:	36						
PROJECT NUMBER:	57185						
START DATE:	5/28/2014						
START TIME:	10:50						
TOTAL NUMBER EXPOSED:	40 organisms per concentration						
CONCENTRATIONS (mg/L):	CON 25 50 125 250 500 1000						
NUMBER DEAD PER CONCENTRATION:	0 0 0 0 3 40 40						
TEST METHODS:	As listed in EPA-821-R-02-012						
STATISTICAL METHODS:	SURVIVAL: Trimmed Spearman-Karber						
LC50:	335.64 mg/L						
95% LOWER CONFIDENCE LIMITS:	316.81 mg/L						
95% UPPER CONFIDENCE LIMITS:	355.59 mg/L						

REFERENCE TOXICANT STATISTICAL RESULTS: LC 50 AND CONTROL LIMITS Americamysis bahia EXPOSED TO POTASSIUM CHLORIDE, 48 HOUR STATIC RENEWAL

Test Number	Date	Project Number	Toxicant Lot Number	Statistical Method	LC₅₀ mg/L	Mean	Twice Standard Deviation 2S	Upper Control Limit Mean+2S, mg/L	Lower Control Limit Mean-2S, mg/L
17	12/4/2012	52633	217304	Trimmed Spearman-Karber	353.6	353.6	22.7	376.2	330.9
18	12/11/2012	53193	217304	Trimmed Spearman-Karber	346.8	350.2	22.3	372.5	327.9
19	12/28/2012	53572	217304	Trimmed Spearman-Karber	353.6	353.6	22.6	376.1	331.0
20	1/30/2013	53768	217304	Trimmed Spearman-Karber	329.9	341.7	22.5	364.2	319.2
21	3/1/2013	53834	217304	Trimmed Spearman-Karber	334.7	341.1	21.6	362.7	319.5
22	3/26/2013	53913	217304	Trimmed Spearman-Karber	287.0	335.8	31.3	367.0	304.5
23	5/3/2013	54044	217304	Trimmed Spearman-Karber	323.3	335.2	31.8	366.9	303.4
24	5/28/2013	54103	217304	Trimmed Spearman-Karber	340.6	335.8	31.7	367.5	304.1
25	6/28/2013	54183	217304	Trimmed Spearman-Karber	329.9	336.1	31.2	367.3	304.9
26	8/7/2013	54289	217304	Trimmed Spearman-Karber	353.6	336.8	32.1	368.9	304.7
27	8/27/2013	54341	314803	Trimmed Spearman-Karber	313.2	335.9	33.7	369.6	302.2
28	10/11/2013	55798	314803	Trimmed Spearman-Karber	353.6	335.3	34.2	369.5	301.1
29	10/31/2013	56242	314803	Trimmed Spearman-Karber	342.3	335.2	34.1	369.3	301.1
30	11/26/2013	56336	314803	Trimmed Spearman-Karber	346.8	335.8	34.5	370.3	301.3
31	12/26/2013	56532	314803	Trimmed Spearman-Karber	347.5	336.5	34.9	371.4	301.5
32	1/31/2014	56669	314803	Trimmed Spearman-Karber	353.6	337.4	35.8	373.2	301.7
33	2/27/2014	56885	314803	Trimmed Spearman-Karber	347.5	338.3	35.9	374.2	302.5
34	3/28/2014	56961	314803	Trimmed Spearman-Karber	353.6	338.3	35.9	374.2	302.5
35	4/30/2014	57061	314803	Trimmed Spearman-Karber	353.6	340.2	35.1	375.3	305.2
36	5/28/2014	57185	314803	Trimmed Spearman-Karber	335.6	339.3	34.5	373.8	304.8

APPENDIX C

LITERATURE REFERENCES

- U.S.E.P.A., 2002. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents And Receiving Water To Freshwater Organisms (Fifth Edition) U.S. Environmental Protection Agency, Office of Water, Washington D.C., EPA-821-R-02-012.
- U.S.E.P.A., 2002. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents and Receiving Water To Marine And Estuarine Organisms (Third Edition) U.S. Environmental Protection Agency, Office of Water, Washington D.C., EPA-821-R-02-014.
- U.S.E.P.A., 2002. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents And Receiving Water To Freshwater Organisms (Fourth Edition) U.S. Environmental Protection Agency, Office of Water, Washington D.C., EPA-821-R-02-013.
- U.S.E.P.A., 2012. Tropical Collector Urchin, *Tripneustes gratilla* (First Edition) U.S. Environmental Protection Agency, Office of Research and Development and Region 9, EPA-600-R-12-022.
- U.S.E.P.A., 1995. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents And Receiving Water To West Coast Marine and Estuarine Organisms (First Edition) U.S. Environmental Protection Agency, EPA-600-R-95-136.
- U.S.E.P.A., 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Technical Document, U.S. Environmental Protection Agency, Office of Wastewater, Washington D.C., EPA-833-R-10-004.
- U.S.E.P.A., 1991. Technical Support Document For Water Quality-Based Toxics Control, U.S. Environmental Protection Agency, EPA-505-2-90-001.
- Zarr, Jerrold, H., 1984. Biostatistical Analysis, (Second Edition). Prentice-Hall, Inc., Englewood Cliffs, N.J.